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This paper considers the linear space-inhomogeneous Boltzmann equation in a 
convex, bounded or unbounded body D with general boundary conditions. 
First, mild Ll-solutions are constructed in the cutoff case using monotone 
sequences of iterates in an exponential form. Assuming detailed balance rela- 
tions, mass conservation and uniqueness are proved, together with an H- 
theorem with formulas for the interior and boundary terms. Local boundedness 
of higher moments is proved for soft and hard collision potentials, together with 
global boundedness for hard potentials in the case of a nonheating boundary, 
including specular reflections. Next, the transport equation with forces of infinite 
range is considered in an integral form. Existence of weak L~-solutions are 
proved by compactness, using the H-theorem from the cutoff case. Finally, an 
H-theorem is given also for the infinite-range case. 
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0. INTRODUCTION 

The linear Boltzmann equation is frequently used for mathematical 
modeling in physics. This paper studies that space-inhomogeneous trans- 
port equation for a distribution function f (x ,  v, t) (describing, for instance, 
a neutron distribution) depending on a space variable x =  (x~, x2, x3) 
in a nonmultiplying, nonabsorbing (i.e., purely scattering) body D, and 
depending on a velocity variable v = (v~,/)2, / )3)  E V = ~[~3 and time variable 
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t E ~+.  Here we assume D = / )  to be a closed, bounded or unbounded, 
(strictly) convex domain in N3 with (piecewise) Cl-boundary F =  8D. In 
absence of external forces the transport equation in strong form is 

0f 
(x, v, t) + v" gradxf(X, v, t) = (Qf)(x, v, t) (0.1) 

x~D\F, v~V, t~+ 
supplemented with initial data 

lim f (x ,  v, t) = Fo(x, v), x ~ D, v ~ V (0.2) 
t+o 

and some boundary conditions. 
In earlier papers (H'12) I considered periodic boundary conditions (in 

x). In the present paper the boundary conditions are chosen (cf. ref. 4 
p. 107) as 

[nvlf(x,v,t)=f,v,>oR(X,V'~v)f(x,v',t)lnv'ldv' (0.3) 

x ~ F ,  nv<0 ,  t~>0 

where n = n ( x )  is the unit, outward, normal vector at xsF=OD, and 
R is a given nonnegative function. For  instance, in the case of specular 
reflection, then 

R(x, v' --+ v) = 6(v - v' + 2n(nv')) (0.4) 

where 6 is the usual Dirac measure, and in the case of diffuse reflection 

R ( x ,  v' ~ v) = Invl M(x, v) (0.5) 

where M(x, v) is a local Maxwell distribution function. 
For  a nonabsorbing boundary the function R in (0.3) is supposed to 

satisfy (cf. ref. 4) 

fn R(X, V' ~ V) d v =  1, x ~ F ,  n v ' > 0  (0.6) 
v < 0  

Sometimes we write the boundary conditions (0.3) 

f(x,v,t)=f, W(x,v'~v)f(x,v',t)dv' (0.7) 
v ' > 0  

x ~ F ,  nv<0 ,  t~>0 
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with 

Inv'l 
W(x, v' -~ v) = ~-~T R(x, v' - ,  v), nv' >0 ,  n v < 0  

The collision term in (0.1) can be written (cf. ref. 4) 

(0.8) 

(Qf)(x, v, t ) = f v  fs Eff(x' v , ) f ( x ,  v', t ) - ~ ( x ,  v , ) f ( x ,  v, 1)] 

x B(0, w) dO d~ d r ,  (0.9) 

where ~ i>0 is a known distribution function. Here, v and v,  are the 
velocities before, and v' and v,  are the velocities after, a binary collision. 
S is the impact plane 

{ ( r ,~ ) :0~<r<k ,  0~<(<27~} 

which also can be parametrized by the usual solid-angle representation 

{(0, ~): 0~<0< 0, 0 ~< ~ < 2~} 

In the cutoff case, S is bounded, that is,/~ < ~ ,  or 0 < ~/2; but in the case 
of infinite-range forces, S is the whole plane, i.e., 0 = ~/2. The function B is 
given by 

B(O, w) = wr 0~0 

where r = r(O, w) is computed through the relevant law of interaction, and 
w=  I v - v , ] .  (For details, see refs. 4 and 15; see also ref. 11). 

In many cases of physical interest the function B(O, w) has a nonin- 
tegrable singularity for 0 = ~/2; for instance, with inverse kth power forces, 
where 

8(0, w) = w,b(o) 

with 7=  (k -5) / (k -  1), 3 < k <  Go, and 

b(O) = O((7~/2- 0) (k+ i//(~ 1)), 0 ~ ~/2 

(o.lo) 

(cf. ref. 4 or ref. 15). For that reason most authors have only dealt with 
the cutoff case, R < ~ ,  or 0 < ~/2, including forces of finite range in the 
collision term (for a discussion of such work, see ref. 11). 

The purpose of this paper is to prove the existence of solutions to the 
linear Boltzmann equation with quite general boundary conditions, first in 
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the cutoff case, and then without cutoff using an H-theorem. That generalizes 
results in refs. 11-13 for the periodic boundary case. 

The space domain D is in Sections 1-4 supposed to be bounded and 
(strictly) convex, but in Section 5, D is allowed to be unbounded. In 
Section 1, first mild Ll-solutions are constructed in the cutoff case 
using iterates in an exponential form. Then mass conservation and 
uniqueness are proved, assuming detailed balance relations inside D and at 
the boundary. Section 2 contains an H-theorem for the solution from 
Section 1 in the cutoff case under detailed balance. In Section 3 first local 
boundedness in time for higher moments is proved for soft and hard collision 
potentials in the cutoff case, assuming a "nonheating boundary," and then 
global boundedness of higher moments is proved for hard potentials in 
the detailed balance case. Section 4 proves the existence of L~-solutions to 
the equation in an integral form for the noncutoff case, including infinite- 
range forces, and also an H-theorem for this case. Finally, in Section 5 
the results are generalized to unbounded domains D, giving results about 
existence, uniqueness, entropy, and higher moments, first in the cutoff case 
and then also for infinite-range forces. 

1. LI-SOLUTIONS IN THE CUTOFF CASE 

In this section the space domain is supposed to be compact (cf. 
Sections 0 and 5). 

In the case of cutoff in the impact parameters, i.e., /~ < Go or 0 < ~/2, 
the collision term (0.9) in Eq. (0.1) can be separated into two terms, "a 
gain term" and "a loss term." A common way to write the collision term 
i s (4 ,11)  

(Qf)(x, v, t) = f K(x, v' ~ v) f (x ,  v', t) d v ' -  L(x, v) f (x ,  v, t) (1.1) 
v 

where 

L(x, v)= f K(x ,v~v ' )dv '  (1.2) 
v 

The collision frequency L is coupled to the functions ~ and B in (0.9) by 
the relation 

L(x, v ) = f v f s  ~(x, v,) B(O, w) dO d~ dr ,  (1.3) 

where w= Iv -v , I .  [In earlier papers, (11"12) I used another notation with 
cross sections 27~ and Z', where K(x,v'-~v)=tv'12;~(x,v'-~v ) and 
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L(x, v) = ]vl X(x, v).] We assume (for simplicity) that the collision kernel K 
vanishes on F and outside D, i.e., 

K(x, v'-~ v) = 0 (1.4) 

for x ~ ~3\D~ where DO= D\I: Then also 

L ( x , v ) = 0 ,  x E ~ 3 \ D  ~ v ~ V  (1.5) 

Furthermore, assume that 

Fo(x, v) = 0, x e R3\/), v ~ V  (1.6) 

Notation. Let 
F+ =F+(v)= {xeF;n.v>0} 

F =F  (v)={xeF;n'v<0} 

where n = n(x) is the unit, outward normal. 
Let, for g i v e n x ~ D \ F  ,v~V, 

tb = tb(X, V)= inf{s > 0; x - - s v ~  ~3\D} (1.7) 

representing the time for a particle going from the boundary to the point 
x with velocity v. 

In this section the linear Boltzmann equation (0.1)-(0.3) with (0.6), 
(1.1), and (1.2) is studied in two integrated forms, the mild form [Eq. (1.9) 
below], and the exponential form (1.10), which both formally can be 
derived from the equations above. Using, for x~D,  v~ V, t~ ~+ ,  the 
notation 

~Fo(x - tv, v), 0 ~< t ~< tb (1.8) 
7(X'V't)=(f(x--tbv, v,t--tb), t>tb 

where x b - x -- tbv ~ F_(v), we have for the mild form 

f(x,v,t)=f(x,v,t)+ (Qf)(x-(t-s)v,v,s)ds (1.9) 

and for the exponential form 

f(x, v, t)=jT(x, v, t) exp l -  f~ L(x- ( t -  s) v, v) ds ] 

+ exp -- L ( x - ( t - s )  v,v)ds 

/ ,  

x] K(x-( t -~)v ,v '~v) f (x-( t -v)v ,v ' ,v)dv 'dT 
V 

x~D,  v~ V, t ~ +  (1.10) 
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equations above, we also employ the following 
functions g, F0, and h: 

= g(x,v, t ) ,  x 6 D \ F ,  v~V, t 6 ~ +  

f(x ,  v, 0) = Fo(x, v), x ~ D, v ~ V 

f ( x ,  v, t )= h(x, v, t), x~F_(v ) ,  vEV, t ~ +  

(1.11) 

where 

= F ( x +  tv, v, t )+  g(x+sv ,  v,s) ds (1.12) 

~Fo (x -  tv, v), 0 <~ t <~ t b 
P ( x ,  v, t)  = ~ h ( x  - t~v, v, t -  tO, t > t~ 

Analogously, f i s  said to satisfy the exponential form of (1.11) if, for t~ N+, 
a.e. (x+ tv ,  v ) e D x  V, 

f ( x + t v ,  v , t ) = F ( x + t v ,  v,t)  exp - L (x+sv ,  v) ds 

+ exp - L(x+sv ,  v)ds . g ( x + z v ,  v , z )dz  (1.13) 

We have the following lemma concerning Eqs. (1.12) and (1.13). 

L e m m a  1.1. Let L ( t ) = L ( x + t v ,  v)sL]oc(~+) and g ( t ) -  
g(x + tv, v, t)~ L~oo(R + ). Then f is a mild solution of (1.11) if and only if 
the exponential form (1.13) holds. 

ProoL For the case 0 ~< t ~< t b, see Lemma 1.2 in ref. 11, where I used 
a Taylor expansion for exp(.) to get the proof. For t > tb use, instead 
of Fo, a function ~(y, v, s), constant for y = x + sv, 0 ~< s ~< t -  tb, such that 

h(Yb, v, t -- tb) = h(yb, V, t -- tb) 

s f ( x + t v ,  v , t ) +  L (x+sv ,  v ) f ( x + s v ,  v,s) ds 

Together with this problem, we also have the two forms analogous to (1.9) 
and (1.10). The function f i s  called a mild solution of (1.11) if, for t e ~ + ,  
a.e. ( x+ tv ,  v ) e D x  V 



Linear Boltzmann Equation 409 

where yb=x+( t - - tb )  v e F  (v), x ~ 3 \ O ,  vGV. Then [cf. (1.12)], 
F(x + tv, v, t) = h(x, v, 0) for t > tb. For an extensive discussion about solu- 
tions to equations in mild and exponential forms, see ref. 14 (see also 
refs. 3,9, 10 and 16 concerning solutions satisfying boundary condi- 
tions). | 

To construct solutions to the linear Boltzmann equation with general 
boundary conditions, iterate functions fn = f , ( x ,  v, t), n =0,  1, 2,..., are 
defined recursively as follows [cf. (0.8)]: 

fo(x, v, t) - 0, x ~  3, veV ,  t ~ R +  

f~+ l(Xb' V' t)= f.,'>o W(xb' v'--+ v) fn(xb' v" t) dv' 

xb~F_(v) ,  nv<0 ,  t ~ +  

f ,+l(x,v , t )=jT~+l(x,v , t )exp - L ( x - ( t - s )  v,v)ds 

• exp - L(x - (t - s) v, v) ds K(x - ( t -  r) v, v' -~ v) 
v 

x f , ( x -  ( t - z )  v, v', z) dv'dv 

x ~ DkF_ (v), v~ V, t > 0  (1.14) 

where 

~ +  l(x, v, t)= t F ~  tv' v), 
t f .+  l ( x -  t~v, v, t -  t~), 

O <~ t <~ tb 

t >  t b 

Let also, for simplicity, 

fn(x, v, t) ~ 0, x f f~3 \D,  v6V,  t e N + ,  n s N  (t.15) 

Now we first formulate a monotonicity result for the iterates. 

L o m m a  1.2. If Fo, K, and W are nonnegative functions, then the 
iterates f ,  defined by (1.14)-(1.15) satisfy 

fn+l(x,v,t)>~f~(x,v,t), n s N ,  X ~  3, u t e ~ +  (1.16) 

Proof (cf. Lemma 1.1 in ref. 11). By induction and (1.14) one finds 
that the sequence {dn}~=o, where d , = f n + l - f n ,  together with {g;~}~=o, 
dn = L +, - L ,  are nonnegative. | 
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Then we can formulate an existence theorem about mild solutions to 
the initial-boundary problem. As usual, L1+(Dx V) denotes the almost 
everywhere nonnegative functions in LI(D x V). 

T h e o r e m  1.3. Assume that R(x, v' -~ v), L(x, v), and K(x, v' ~ v) 
are nonnegative, measurable functions, such that (0.6), (1.2), and (1.4) 
hold, and L(x, v) ~ L~or • V). 

If F o ~ L I ( D  • V), then there exists a global mild solution (i.e., defined 
for t > 0 )  to the problem (0.1)-(0.3) with (1.1) and (1.6). This solution 
satisfies 

If 

IDfvf(x ,  v,t) dxdv<<-I~fvFo(x, v) dxdv, 

L(x, v) f (x ,  v, t) 6 L l+ (D • V) 

t e N +  (1.17) 

(1.18) 

then the trace of the solution f satisfies the boundary condition (0.3) for 
t e N + ,  a.e. ( x , v ) e F x  V. 

Proof. Define iterates fn, n = 0 ,  1, 2,..., by (1.14). If, for a given func- 
tion fn, L(x, v)fn(x, v, t)~Li(D x Vx [0, T]), T > 0 ,  then by Lemma 1.1. 
the following (mild) equation holds, for a.e. ~, ~/e D x V, t e N+: 

f2 fn+l (x ,  v, t) + Z ( x - ( t - ' c )  v, v) f n + l ( X - ( t - z ) v ,  v, z)d'c 

= 7n+l(x, v, t )+  K(x-(t-r)v,v'~v)fn(x-(t-r)v,v',Oclv'dr 
V 

(1.19) 

Changing variables x~--~• in (1.19) and differentiating along the 
characteristics, one finds that, for t ~ [0, T], a.e. (x, v) s ~3 x N 3, 

d 
dt (f.+ l(x + tv, v, t)) + L(x + tv, v) f~+ l(x + tv, v, t) 

= f K(x + tv, v'--* v) fn(x + tv, v', t) dr '  (1.20) 
v 

Supposing that L(x, v) fn(x, v, t)eLI+(D x Vx [0, T]) and Invl in(x, v, t ) e  
LI+(F+ x Vx [0, T]), then by Green's identity ~3'4'9) and a change of 
variables, 
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f,~+ ~(x, v, ~c) Invl dot dv dT J o v f" +~(x'v't)  d x d v + j o  v + 

+f~f~f L(x,v)fo+l(X,V,,)dxdvd, 

for " = Fo(x,v) dxdv+ j f ,+l(x,v,~)lnvldadvd~ 
V V F 

; ;of f + K(x, v' -~ v) fn(x, v', z) dv' dx dv dz (1.21) 
V V 

where de represents the surface measure on F. 
Here the first and third terms on the right-hand side are finite by 

assumption, and the second term can be transformed, using (0.6), (0.8), 
and (1.14), 

f fvfr f.+l(X,V,z) lnvldodvdz 

= fofrffo,<o R(x,v'~v)f.(x,v',z)]nv'ldv'dadvd'r 
n v '  > 0 

= f . ( x ,  v', r) Inv'l da dv' dr < ~ (1 .22 )  
V 

by assumption. Then all three positive integrals on the left-hand side of 
(1.21) are finite, which gives the induction step. So (1.21) holds for all 
n>~0. 

Now, using (1.2) and Lemma 1.2, 

f ' f~ f  f v v 

J:;of = L(x,v)[f,(x,v,r)-f,~+l(x,v, 'r)]dxdvdz<~O (1.23) 
V 

and also, using (1.21) and (1.22), 

f f, fr f .+~(x,v,z)[nvldadvdz 

foff  - f .+  l(X, u T) [nvl do- dv d'r 
V + 

= [f ,(x,  v, r ) - f ,+ l (x ,  v, z)] ]nv[ dadvdr<~O (1.24) 
V + 
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Then, using (1.21), (1.23), and (1.24), 

[ [  fn+l(  x ,v , t )  dxdv~<[  [ Fo(x,v) dxdv,  n ~ N  (1.25) 
�9 / D  a V 'JD v V  

By Levi's theorem on monotone convergence there exists a function 

f ( x , v , t ) =  lim f , (x ,v , t ) ,  x e D ,  veV,  t e N +  (1.26) 
n ~ o o  

which is a mild solution to the linear Boltzmann equation in the exponen- 
tial form (1.10), and also satisfies the boundary condition (0.3) for 
(x, v, t) e F x V x ~ +, such that one side of (0.3) exists. 

To get the existence of a boundary trace of the solution f we use a 
trace theorem, Proposition 3.3, Chapter XI, in ref. 9. We can formulate it 
for our purposes: Suppose f and Lf belong to LI+(D x V). Then f has 
a unique trace f-+. Furthermore, the Green's identity holds for f ,  if 
f - ( x ,  v, t)Invl eLl(rx Vx [0, T]). 

Using this proposition together with (1.17) and (1.18), the existence of 
a trace follows. Furthermore, let n ~  oe in (1.14b) with (0.8); then, by 
monotone convergence, the solution f satisfies the boundary condition (0.3) 
for t e ~ + ,  a.e. ( x , v ) e ( F x  V). So Theorem 1.3 follows. I 

Romork. The iterate function f ,+ l (x ,  v, t) defined in (1.14) has a 
natural physical meaning. It represents a distribution of particles which 
have undergone at most n collisions inside D or at the boundary F in the 
time interval (0, t). The difference f n + l - f ,  gives the distribution of par- 
ticles with exactly n collisions. Then f =  lim,_, co fn represents the distribu- 
tion of particles with at most denumerably many collisions for t > 0. 

Assumption. In the rest of this paper we suppose that there is a 
detailed balance relation (or reciprocity relation) for binary collisions inside 
D between particles with density function f and particles with density 
function r i.e., we assume that there exists a function E =  E(v)> 0 such 
that (cf. ref. 4, p. 170) 

K(x,v~v')E(v)=K(x,v'~v)E(v'),  xeDkF, v , v ' e V  (1.27) 

Using (1.1), (1.2), and (1.27), one finds that the function E =  E(v) satisfies 

(QE)(x, v, t) = 0 (1.28) 

so E(v) is an equilibrium solution to Eq. (0.1) if F0(x, v )=  E(v) and if E(v) 
satisfies the boundary condition (0.3). Another way to formulate the 
detailed balance relation (1.27) is 

~9(x, v.)  E(v) = r v.) E(v') (1.29) 
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An important example with detailed balance is given by a local Maxwellian 
function 

~p(x, v , ) = X ( x )  e x p ( - c m ,  Iv,] z) 

where X is a function of the space variable x, c is a positive constant, and 
m ,  is the mass for a particle with density function 0. Then (1.29) holds 
with 

E(v) = a exp( - em Ivl 2) 

where a is a positive constant and m is the mass of a particle. This is so 
because of the energy conservation law for a binary collision. 

In the following we also assume that there exists a function 
E b = Eb(x, v) > 0, giving a detailed balance relation at the boundary, which 
can be written (a) 

Inv't R(x, v ' ~  v) E~(x, v') = lnvt R(x, - v  --, - v ' )  Eb(x, - v )  

nv'>0, nv<0 (1.30) 

One finds, by straightforward calculations using (0.6), that such a function 
Eb(x, v) satisfies the boundary condition (0.3). We assume in the following 
that [cf. (1.27)] 

Eb(x, v) = E(v), x ~ F ,  v ~ V  (1.31) 

Then E = E(v) is a stationary solution to the linear Boltzmann equation in 
the strong form (0.1) with (0.2) and (0.3), and also to the equation in the 
mild form (1.9) and in the exponential form (1.10). 

In the case of detailed balance (1.27) and (1.30) with (i.31) we can 
now prove that equality holds in (1.17), giving mass conservation, and also 
that the solution in Theorem 1.3 is unique (in the relevant Ll-space). 

Theorem 1.4. Assume that the detailed balance relations (1.27) 
and (1.30) with (1.31) hold, where E(v)sLI~(Dx V) is an equilibrium 
solution satisfying 

K(x,v~v')E(v)ELl+(Ox Vx V) and [nvl E(v)~LI+(Fx V) 

(1.32) 

(A) I f f = f ( x ,  v, t) is the solution given in Theorem 1.3, then 

f(x,v, )dxdv=fof Fo(x, ld,,dv, (1.33t 
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(B) Moreover, if f = f ( x ,  v, t) is a (mild) solution to the problem 
(0.1)-(0.3) satisfying the exponential form (1.10) and 

f D f v f ( x , v , t ) d x d v < < . f o f v F o ( x , v ) d x d v  (1.34) 

then 
f ( . ,  ., t )= f ( . ,  ., t) a.e. in D • V, t ~ +  

Proof. (A) We use a cutoff in the initial value function, 

F~(x, v )=  min(Fo(x, v), p .  E(v)), p =  1, 2, 3,... (1.35) 

P x t) for 1, 2, 3,..., using the and construct the iterate functions fn(  , v, n = 
initial function Fo p . By induction and elementary calculations one finds that 

f , ( x ,  p v,t)<<.p-E(v), x ~ D ,  v~V,  t ~ + ,  n, p e ~  (1.36) 

P ~ has a pointwise limit By Theorem 1.3 the increasing sequence {f,}n=~ 
(when n ~ ~ )  satisfying 

f P ( x , v , t ) =  lim f P ( x , v , t ) ~ p . E ( v ) ,  p E ~  (1.37) 

Now we use Eq. (1.21) for the iterates fP,  

f n+ l dx dv + f~+ l Inv] da dv dz 
V V + 

f fo; + L f  p + 1 dx dv dT 
V 

= F P d x d v +  fP+~ Invl dadvdz  
V V _ 

f fo; ; + Kf  p dx dv' dv dr 
V V 

Here, using (1.32) and the dominated convergence theorem 

J +l i.vl dv 
V + 

= fP Invl da dv dz 
V + 

= li_m v _ fP  + 1 I nv] da dv dz 
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and 

nlim L f  p + 1 dx dv dr 
V 

fofof = Lf p dx dv dr 
v 

= f fvfvl fCdxdvdv' 

Then 

Using (1.35) and the monotone convergence theorem, the mass conserva- 
tion relation (1.33) follows, when p ~ oo, so statement A is proved. 

(B) Compare the function f = f ( x , v ,  t) with the iterate functions 
f ,  =f,,(x, v, t) defined in (1.14). By induction, using (1.10) and (1.14), one 
finds that 

fn(x,v,t)<~f(x,v,t), xsD,  vsV,  te~+,  neN 

SO 

and 

f (x ,  v, t) = lim f,,(x, v, t) ~<f(x, v, t) 
n ~  

f (x ,v , t ) - f (x ,v , t )<~O, xeD,  veV, te~+ 

But, by A and (1.34), 

fof ldxd*=f f odXdV> fof/dxdv 
SO 

Then for t > 0 

fD fz ( f - - f )  dx dv >~0 

f ( . ,  -, t )=- f ( - , . ,  t) a.e. in D x V | 

822/'59/'1-2-27 



416 Pettersson 

Romark. The mass conservation and uniqueness results in 
Theorem 1.4, which are improvements of corresponding results in ref. 11, 
can also be obtained without detailed balance assumptions, using other 
types of assumptions on the functions B and ~ in the collision term (cf. 
ref. 5 and also Section 3). 

The results in Theorem 1.4 are also easily obtained if (1.18) holds and 
f (x ,  v, t)[nvl ~LI(Fx Vx [0, T]); let n ~  oe in the Green's identity (1.21). 

2, THE H - F U N C T I O N A L  IN THE C U T O F F  CASE 

An H-functional He(f) ,  which is a (negative) entropy functional, can 
be defined by 

HE(f  )(t) = Jz~ ~ f )c(x' v, t) logl-f(x,  v, t)/E(v)] dx dv (2.1) 
0 V" 

where D o = D\F, D compact, and E(v) is a given function, (see, e.g., refs. 16 
and 17). As usual, we define 0 log 0 =0.  Analogously, we also define an 
(integrated) relative H-functional for the boundary F=~D (cf. ref. 4, 
p. 138), 

H~(f)(t)  = vf(x,  v, r) l o g [ f  (x, v, z)/E(v)](nv) da dv dz (2.2) 

where n v > 0  on F+ and n v < 0  on F . 
The main result of this section is given in Theorem 2.1, which is an H- 

theorem for our solution f to the linear Boltzmann equation under detailed 
balance and general boundary conditions. From this theorem it follows 
that the H-functional (2.1) for our solution is nonincreasing in time, 

HE(f)(t)<~HE(Fo), t e~+ (2.3) 

Such H-theorems, usually formulated as in (2.3), have been proved in 
various situations; for instance, by Voigt (16) for linear operators, by 
Arkeryd (1) for the nonlinear, space-homogeneous Boltzmann equation, 
and by Cercignani (4) including the boundary, generalizing a boundary 
H-theorem by Darrozes-Guiraud. The proof of our theorem combines the 
methods in refs. 1, 4, and 16. 

T h o o r e m  2.1. Let f = f ( x ,  v, t) be the mild solution of problem 
(0.1)-(0.3) given in Theorem 1.3, and let the detailed balance relations 
(1.27) and (1.30) with (1.31) hold, together with (1.32). If HE(Fo) exists, 
then the relative H-functional HE(f  )(t) in (2.1) exists for t > 0 ,  and it is 
nonincreasing in time. Moreover, 

f2 ;2 He(f) ( t  ) -- He(Fo) ~ NE(f)(z ) dr + N~e(f)(z) dr (2.4) 
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where 

and 

NE(f)(t)= ~ fD Iv fvK(x, v ~ v') E(v) 

• [ S ( ~ v , , , ) f ( x ,  ~, , )]  
L E(v') E(~ _1 

x[logf(XE'(:;t) �9 f(x'v" t)] - l o g  ~ - ( ~ - T ) ] d x d v d v '  

1 P 

JJ_ g(x,  v' ~ v) Inv'l E(v') Nb(f)(t) = 5 Jr - , , ,<o 
IlV' >- 0 

i / ix ,  v,, ,) f(x, ,, ,!] 
x L E(v') E(v) 

Proof. We shall use the elementary inequality 

zlogz>~z-1, for z > O  

with equality if and only if z = 1. With z = JTE, one finds that 

f log(f/E) >>. f -  E 

with equality in (2.7) if and only if f =  E. With 

f log(f/E) = f log + (f/E) - f log-  (f/E) 

this gives 

Therefore 

if 

0 <~flog-(f/E) ~f log+(f /E)-- f+ E 

f log-(f /E) c L~+(D x V) 

flog+(f/E)~L~+(D• V) and E~L~+(Dx V) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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To prove Theorem 2.1, we start with a special case having a (double) 
change in the initial value function. Let, for p, j = 1, 2, 3 ..... 

1 
FP'J(x,v)=FP(x,v)+-E(v), x~D, v s V  (2.9a) 

J 
where 

F~(x, v) = min(Fo(x, v), pE(v)) (2.9b) 

I f f  p'J =fP'J(x,  v, t) is the mild solution from Theorem 1.3 with initial value 
F~ 'j, then equality holds in (2.4), i.e., 

He(fP'Q(t)-  He(F~ 'j) = NE(fP'O(z) dr + Nbe(fP'O(r) dr (2.10) 

To prove this statement, we start with the iteratesf~, n --- 0, 1, 2 ..... and 
fP = limn ~ ~ f~ ,  using the initial value function Fo p . Now let 

1 
P'J t) - f ,~(x,  v, f~  (x,v, - p t ) + - E ( v )  (2.11a) 

J 

fPJ ~ also converges pointwise (when Then the increasing sequence { d },=0 
n ~ ~ )  to a function 

1 
ff 'J(x,  v, t) = i f ( x ,  v, t) + - E(v) (2.1 lb) 

J 

which by linearity is a mild solution corresponding to the initial value 
function F~ "i. 

Now we get from (1.20) in Section 1, using differentiation along the 
characteristics, that, for a.e. (x, v, t) ~ ~3 • ~3 • [0, T], 

d p.j ~ , 
dt ( f ,+l (x+tv 'v ' t ) )  =J K(x+tv, v'-~v)fP'J(x+tv, v , t )  dv 

V 

- L(x + tv, v)fP'+ j l(x + tv, v, t) 

Multiplying this equation with {1 +log[-fP'+: l(x + iv, v, t)/E(v)] } and 
using (1.2), one has 

( fn+ l(X + v, tt 
fP'~ ~(x + tv, v, t ) log \- ~ 

= f [K(x + tv, v' ~ v) fP'J(x + tv, v', t) 
V 

- K ( x  + tv,  v ~ v')  fp,+i 1( x + tv, v, t ) ]  

x [ 1  + l o g (  fp '+ j l (x+ tv 'v '  E(v) t))] dv' 

a.e. (x,v, t ) ~ 3 x ~ 3 x  ]-0, T], T > 0 .  
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Then, integrating 

fs f~3f~3 ' ' d x  dv d'r 

and using a Green's identity, we get (after a change of variables 
x + rv ~ x), with D O = D\F, 

~D f P'J P'J o o v fn+~(x '  v, t ) l o g [ f n + l ( x ,  v, t)/E(v)] dx dv 

Here 

SO 

- fDo f FU(x, v)log[F;,qx, v)/E(v)] a,, dv 

+ fo frfo,>of~/+l(X,V,z)log[f~/+1(x,v,z)/E(v)] lnvl da dv dr 

- ~ ~ L,<o fP'+J ,(x, v, r)log[fP'+Y ,(x, v, r)/E(v)] inv[ do" dv dr 

•  P'/ l o g [ f . +  l (X ,  v,  z)/E(v)] } dx dv dv' dz 

1/j <~ fP'++ l(X, v, t)/E(v) <~ p + 1 

[log(f,P'+ / ~/E)I < log j + log(p + 1 ) 

for all n EN. Using this inequality together with the assumptions (1.32) 
and the dominated convergence theorem, when n ~ ~ ,  we arrive at the 
following equation for fP'J= lim, + ~ fP'J (with the boundary integrals on 
the right-hand side): 

'D f f fP'Y(X, V, t)1og[fP'/(X, V, t)/E(v)] dx dv 
o 0 V 

- f ofvFU(x, v)log[FP'J(x, v)/E(v)] d x d v  

fofof f = [K(x, v ' - -  v)fP' / (x,  v', r) - K ( x ,  v -- v')fP'+(x, v, r ) ]  
v v 

x {1 + log[fP' /(x,  v, z)/E(v)] } dx dv d r ' &  

fof f -- fP'J(X, V, V) log[fP'J(x, V, r ) /E(v)] -  (nv) dcr dv dr (2.12) 
V 
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Here the first term, i.e., the collision integral, on the right-hand side can be 
written, after a change of variables v ~ v', v ' ~  v and using the detailed 
balance relation (1.27), 

l f o f D f  f [K(x ,v ' -~v) fP'J(x ,v ' , r ) -K(x ,v-~v ' ) f ; 'J(x ,v ,~)]  
2 v v 

x {log[fP'J(x, v, r)/E(v)] 

- log[fP'J(x, v', v)/E(v')] } dx dv dr' dr 

l fo fDf  f K(x,v-~v')E(v) 
2 v v 

x [fP'J(x, v', r ) / E ( v ' ) - f P J ( x ,  v, z)/E(v)] 

x {log [fP'J(x, v, z)/E(v)] 

- log[fP'J(x, v', r)/E(v')] dx dv dv' dz 

= I" Ne(fP'O(r) dr 
Jo 

Furthermore, in the second term, the boundary integral, on the right-hand 
side of (2.12) we t ransform/b  as follows, writing f(v)  for fP'J(x, v, T) and 
using (0.3), (0.6): 

Ib(x, ~) = --fvf(V ) log[f(v)/E(v)](nv) dv 

= fnv<O f(v)  log[f(v)/E(v)] Invl dv 

- f~v'>O f(v ' )  log[f(v')/E(v')] Inv'l dv' 

=fn  v<O logpf(v)lE(v)]f,,v,>O R(v' -> v) I.v'l f (v ' )  dv' dv 

-- f.v<oR(V'-->v) dv fnv,>of(v')log[f(v')lE(v')] Inv'l dr' 

= ffnv <0 R(V; ~ V ) / n v ' l  f(v'){log[f(v)lE(v)] 
nv'  > o 

- log[f(v')/E(v')] } dv dv' 
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Changing variables v'F--~-v, v~-*-v '  and using the detailed balance 
relation (1.30), we get 

Ib = f l  R ( - v  ~ -v ' )  [nv[ f ( - v )  

[-1 f ( - v ' )  lo f ( - v ) l  • - g dvdv' 

:-fro F Iv) 1 R(v' ~ v) [nv'l E(v ' ) /E(v)  
2 v<o 

IIV ~ > 0 

f(v')] 
E(v')3 

[-lo f(v ' )  , f(v)-I 
x L g E- - -~ -  l~ E---~J dvdv '  

Then we get, by integration [cf. (2.6)], that Sr Ib(x, ~)da = N~(fP'Q(~), so 
proposition (2.10) holds. 

Now, continuing the proof of Theorem 2.1, we will first l e t j ~  ~ ,  and 
then p -* or. By the following inequalities, holding for all j, 

O <~ fP'J log + (fP'J/E) ~< (p + 1) log(p + 1)- E 
(2.13) 

0 <~ fP'J log (fP':/E) ~< [- 1 + (p + 1 ) log(p + 1)] .  E 

and the dominated 
that 

S O  

convergence theorem, it follows for f P = l i m i ~  ~ fP'J 

fDO fV fp l~ dx dv =jlimoo I f  DO fv fp'] l~ dx dv] 

HE(fP)(t) = lim H~(fP'O(t) exists for t > 0 
j ~ : ~  

Also 
HE(F~) = lim HE(F~ 'j) (2.14) 

j ~ m  

For p ~  ~ ,  use Fatou's lemma with the nonnegative function S p 
[cf. (2.7)], 

SP(x, v, t) =-fP(x, v, t) log[fP(x, v, t)/E(v)] - fP(x, v, t) + E(v) ~> 0 

Then 

fD [ lim SP(x,v,t)dxdv<~ lim inf[fD f SP(x,v,t)dxdv 1 
O d v p ~  p ~ o o  0 V 
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so, with f = limp ~ ~ fP, 

f~>o Iv I f  log(fiE)- f + E] dx dv 

~< l i m i n f ~  f [ f P l ~  dxdv  
p ~ oo J D 0 V 

= lira inf[[po~o LJD0 fv f;l~ axdv] 

- plimoo foofvfP dx dr+ fDOfv E dxdv  

where, by m o n o t o n e  convergence,  

fls foof/paxa,--foof/a,,a, 
Then 

i.e., 

with 

fDo fv f log(fiE)dx dv ~ lipm ioonf fDO fv fp log(FiE)dx dv 

He(f ) ( t  ) <. lim inf HE(fP)(t), t~ R+ 
p ~  

f = f ( x ,  v, t ) =  lim fP(x ,  v, t) 
p ~ o o  

Fur thermore ,  by m o n o t o n e  and domina ted  convergence,  

Pettersson 

because 

(2.15) 

0 ~< F p log + (FP/E) <<. Fo log + (Fo/E) 

0 ~< Fo p log - (FoP/E) <~ F o log + (Fo/E) + E 

N o w  we also use Fa tou ' s  l emma  for the two terms on the r ight-hand 
side of  (2.10), when p , j ~  ~.  These are integrals of nonposi t ive functions 
[cf. (2.5) and (2.6)],  so we get 

lim HE(F p) = HE(Fo) < ~ (2.16) 
p ~  
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lim sup Ne(fP'J)(r) dr <~ Ne( f ) ( r )  dr 
p , j  ~ c~ 

(2.17) 
lim sup N~(ff 'O(r) d ~  N ~ ( f ) ( r ) d r  

p , J  ~ o3 

where f =  f (x ,  v, t )=  limp, j ~ ~ fP'J(x, v, t). 
Summarizing, we find, by (2.10) and (2.14) (2.17), that 

H E ( f  )(t) - H~(Fo) 

~ liminfHE(fP.O(t) - lira He(Fg'O 
p , j ~  oo p . j ~  oo 

~< lim sup NE(fP'J)(r) & + lira sup N~(fP'J)(r) dr 
p , j  ~ co p , j ~  co 

<~ Ne(f)(r)  d~ + N~(f)(r)  dr <. 0 

and the theorem follows. | 

Remark. Using 
that 

fo H~(f)(t)  = - N~(f)(r)  dz 

Then our H-theorem, Theorem 2.1, can be written as follows(4): 
~t 

Hz(f)( t )  + H~(f)(t)  <~ HE(Fo) + J0 WE(f )(r) d~ 

The results in this section can also be formulated in the following way. 

C o r o l l a r y  2.2. If the assumptions of Theorem 2.1 are satisfied for 
t~>O, then for O~<t~ 4 t  2 

<~ H e ( f  )(t,) + ;,2 N~(f)(r) dr + ~,2 N~(f)(v) dv HE( f  )(t2) 
~t 

i.e., 

f t t~ HE(f)( t2)+Hbz(f)( t2)~HE(f)( t~)+H~(f)( t~)+ N~(f)(r)dr 
[ 

3. ON HIGHER MOMENTS IN TIlE CUTOFF CASE 

This section uses the form (0.9) for the collision term and studies some 
interactions including inverse kth power forces. First we get a theorem 

the notation (2.2) for the boundary term, we find 
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N o t a t i o n .  
follows: 

about local boundedness in time for higher moments of the solution from 
Section 1, under some assumptions, which include both soft and hard colli- 
sion potentials. Then, under further assumptions, which include the case of 
hard potentials, we get a result about global boundedness in time for 
higher moments. The space domain D is here supposed to be compact (cf. 
Sections 0 and 5). 

Given q/> 0, r > 1, define the function hq, r : ~ + --+ ~ + as 

hq, r(V)=~(l+v2)q/2, O<.v<r-1 (3.1) 
~const, r ~< v < oo 

and specify hq, r on ( r -  1, r), SO that its first-order derivative is continuous 
on R+ and decreasing on ( r - l ,  r). (Here we use v =  Ivl, etc., for the 
absolute value of the velocity v, etc.) 

The following proposition holds for local boundedness in time for 
moments of our mild solution. 

Proposition 3.1. Let B(O, w) be continuous for 0 ~< 0 < n/2, w > O. 
Suppose there exist constants CB and 2 with 0 ~< 2 < 2, such that (for all 
v,v,E V) 

fo~/2wcosO B(O,w) dO<<. Ca(l +w) ~, w = ] v - v , [  (3.2) 

Assume there exists a constant Cqo.X, such that 

fv(l+v,)X+max(l'q~ l)O(x,v,)dv,<Cqo.X, xeD (3.3) 

Suppose that the boundary function R in (0.3) satisfies 

R ( x , v ~ v ' ) = 0 ,  v'>v, v , v ' e V ,  x s F  (3.4) 

(representing a "nonheating boundary"). If 

(1 + D2) q0/2 F0(x, v) E LI(D x V) 

then the mild solution f (given in Theorem 1.3) to the linear Boltzmann 
equation with (general) boundary conditions satisfies 

I D l y (  1 +v2)q/2f(x, v, t)dxdv<~eAt fDfv(1 +v2)q/2 Fo(x, v)dxdv 

for 0 < q ~< q0, some constant A, and all t > 0. 

(3.5) 
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Proof. Start with the iterates {fn}n~O, defining f = l i m , , ~  f~, and 
use [cf. (1.20)1 

d 
dt [fn(x + tv, v, t)] + L(x + tv, v) fn(x + tv, v, t) 

= f K(x+tv ,  v ' ~ v ) f , _ l ( x + t v ,  v', t) dv' (3.6) 
V 

where all terms belong to L~(~3 • ~3•  [0, T]), T > 0  (cf. Section 1). Then, 
using Lemma 1.2 and multiplying (3.6) with the bounded function hq, r(V) 
[cf. (3.1)], we get 

d 
d5 Ehq'r(l)) fn(x + tv, v, t)] 

f hq, r(v ) K(x + tv, v' ~ v) fn(x + iv, v', t) dr' ~< 
J V 

- hq, r(V) L(x + tv, v) f~(x + tv, v, t) 

Integration over ~3 • ~3 • [0, T], using a Green's identity and a change of 
variables, gives. 

fo f h~,r(V)s v, t)dx dv-  fo i~ h~,r(v)fo(X, v)dx  dv 

+ hq, r(l) ) f~(x, v, z)(nv) da dv dT 
V 

f fof ; <<. [hq, r(V' ) -hq ,  r(V)] K(x, v, --* v') f~(x, v, r) dx dv dv' d'v 
V V 

(3.7) 

after some further changes of variables and use of (12) for the collision 
term on the right-hand side. The collision integral in (3.7) can also be 
written 

fo' fo fv fv fs [hq'r(V')-hq'r(v)] ~(x' v*) B(O' w) fn(X' V' z) dO d~ dx dv dv* 

Writing the boundary term in (3.7) on the right-hand side, we get, by (0.3), 
(0.6), and (3.4), that 

- f[ fr fvhq, r(V) f~(x, v, r)(nv) d~ dv dz 

f O ; F f f  n hq, r hq, r 
= [ ( v ' ) -  (v)]  

v ' < O  
n v > 0  

x R(x ,  v --* v') f.(x, v, v) Invl da dv dv' dr <~ 0 
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Then 

fD fv hq'r(v) f n ( x '  u f) dx du  fD fv hq''(v) Fo(x, v)dx dv 

fofD fv fv fs ~hq'r(1)t)- hq'r'l))] ~(x ,  u  

x B(O, w) f .(x,  v, z) dO d~ dx dv dv.  dz 

Pettersson 

where, for v '>  v (by the construction of hq, r), 

hq,,.(v') - hq, r(v ) ~< [-1 + (I) ')2] q/2 - (1 + v2) q/2 

Here we use the following essential inequality, which 
velocities in a binary collision(12): 

(3.8) 

holds for the 

[-1 "~ (V')2] q/2 -- ( l  + U2) q/2 ~ qK 1 COS 0 w(1 + f),)max(1,q 1) (1 -~ ~)2)(q 2)/2 
(3.9) 

for some constant K1. 
Using this together with (3.2) and (3.3), we find that the right-hand 

side of (3.8) is less than 
t 2~z 

qKl fofDfvfvfo .f/2wcosOB(O,w)(l+v*) max(l'q-1) 

x r v.)(1 + v2) (q-2)/2 

xf , (x ,  v, z) dx dv d r ,  dO d~ dz 

<~ 2~zqK1CB2;.f~fDYvfv(1 _~1)$)).+max(1,q--1)~l(X,u 2)/2 

x f , (x,  v, z) dx dv d r ,  dr 

<~ 81rqK1CBCqo,.~ (1 + v2)(q+~-2)/2f,,(x, v, z) dx dv dz 
V 

Here we also used that 1 +w~<(1 + v . ) - 2 ( 1  +v2) 1/2. 
Let 6 = rain(q, 2 - 2) > 0. Then, by (3.8), when r ~ ~ ,  

fof (l+~2)~/2fr,(X,V,t)dxdv 

<~ I f (l+v2)q/2Fo(x,v) dxdv "D V 
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~< ID Iv (1 + v2) q/2 Fo(x , v) dx dv 

f; +A fDfv(l+v2)q/2f,(x,v,v)dxdvd~ 

with some constant A (=  8~qK1C~Cqo,~.). Now using a Gronwall lemma, 
we get 

fDfv (1 +v2)q/2 fn(X, V,l)dxdv~eAt fDfV(1 +tj2)q/2 Fo(x, v)dxdv 

Let n ~ ~ and use that fn ~ f  Then (3.5) follows, giving local boundedness 
in time for soft and hard potentials, 0 ~< 2 < 2. ] 

Remark. The assumption (3.4) about "nonheating boundary" is 
satisfied, for instance, by the specular boundary condition. 

The rest of this section is concerned with global boundedness in time 
for hard potentials in the collision term. 

T h e o r e m  3.2. Let the assumptions of Theorem 3.1 be satisfied with 
1 ~< 2 < 2. Moreover, suppose there are constants CB > 0 and Co > 0 such 
that 

f[ /2 w cos 2 0 B(O, w) dO >1 CBw; (3.10) 

and 

fv~(X, v,)dv,>~Co, x s D \ F  (3.11) 

Assume that the function E(v) in the detailed balance relations (1.27) and 
(1.30) with (1.31) satisfies 

(1 + v 2)q~ K(x, v ~ v') E(v) e L l+ (D x V x V) 

(1 ~-U2) qO/2 R(X, V----~ V')Invl E(v)~LI(F• V• V) 

Then the mild solution f (given in Theorem 1.3) satisfies 

fDfV( 1 +v2)q/2 f(x,v,t)dxdv<~Aq fDfv(l +v2)q/2Fo(x,v)dxdv 

for 0 < q ~< q0, some constant A q, and all t > 0. 

(3.13) 
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Proof. Start with a cutoff in the initial value [-cf. (1.35)] 

FP(x,v)=min(Fo(x,v),p.E(v)), x6D,  v~V, p = 1 , 2 , 3  . . . .  (3.14) 

p co and construct (as in Section 1) the increasing sequence of iterates { f ,  }n =o 
with limit 

= . x t ) .<  p E(v)  (3.15)  fP (x ,v , t )  lira f , (  ,v, 
n ~ o o  

Now we use f o r f  p Eq. (3.6), which, after a multiplication with the bounded 
function hq, r ['cf. (3.1)] and integration along the characteristics, gives 
[cf. also (0.3), (0.6), (1.2), (1.14), and (3.7)] 

fD fvhu, r(v) fP(x, v, t) dx d v -  fD fvhq,,(v) F~(x, v) dx dv 

fofof f = hq.r(v') K(x, v --* v ' ) f  p_ l(x, v, z) dx dv dv' dz 
V V 

- - fOfDfvfvhq,  r(1)'K(x,v--~Vt)f:(X,V,~) d x d v d v t d T  

f2f  f. + hq.r(v')R(x , v---, v ' ) f~_  l(x, v, z)]nvJ dadvdv'dz 
V ' < 0  

n v > 0  

t p -- hq, r(v) R(x, v---~ v ) f , ( x ,  v, z)Invl da dv dv' dz 
V ' < 0  

n v > 0  

Here, letting n - ,  oo and then r---, oo, using (3.1), (3.13), (3.14), and the 
dominated convergence theorem, we get the following proposition: 

fD fv (l +v2)q/2 fP(x 'v ' t )dxdv  

- f D fv ( l + v2)q/2 F~(x, v) dx dv 

• K(x, v -* v') fP(x, v, z) d x  dv dv' dz 

fof ffo + {[I + (v')2] q/' - (1 + re) q/2 } 
V'-<O 

n v > 0  

• R(x, v ~ v')fP(x, v, z) ]nvl do dv dr '  dv (3.16) 
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Taking the derivative with respect to t and using (3.4) gives 

d 

f fvf 
x K(x, v ~ v') fP(x, v, t) dx  dv dr' 

= f o f v f v f s { [ l  +(v')2]q/2-(l +v2)q/2} 

x B(O, w) O(x, v,)  fP(x, v, t) dx dv dv,  dO d( (3.17) 

Here we use the following essential inequality for the velocities in a binary 
collision (cf. Proposition 1.2 in ref. 12): 

[1 + (v ' )2]  "/2 - (1 + v2) q/2 

' ~ K~wcos 0 (1 -'1"- V, )  max(l 'q-1) (1 -~- V2) (q 2)/2 

- Kzw cos 2 0 (1 + v2) (q- 1)/2 (3.18) 

with some positive constants K~, K 2 > 0. Then it follows, by (3.2)-(3.4), 
(3.10)-(3.12), (3.17), and (3.18) and the elementary inequalities ~ 

1 + w ~< 2(1 + v , ) ( 1  + v2) 1/2 

- -wX<~( l+v , ) ; - -21- ;~( l+v2)  ;42, 1~<2<2 

that 

fv (1 + v2)q/2fP(x, t) dx dv 

fDf f f27r~ 7z/2 ,max(l,q-- 1) ~< KI w cos 0 B(O, w)(1 + v , j  ~,(x, v,)  
V V ~0 

• ( t  "~-V2)(q-2)/2fP(x, V, l) d x  dv  dv,  dO d( 
2~z 

- -  w c o s  2 0 B(O, w) Ip(x,  v , )  K2 fDfvf fo fo/2 
• (1 A-/)2)(q 1)/2fp(x ' V, t) dx dv dr, dO d~" 
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27zKiC~fDfvfv(1 +w)~( 1 -~ I)g)max(l' q-- 1) ~/(X, u 

)< (1 q- U2)(q-g)/2 fP(x, u l) dx dv dr ,  

--27zK2CB fD fv fv w~t~(x' v*)(1 + v2)(q-~'/2 fP(x' v, t )dx dv dr ,  

x ~O(x, v,)(1 + u2)(q+2-2)/2fP(x, v, l) dx dv dr ,  

+ 2~K2C B f~ fvfv(1 +~.)~ r v.)(1 + ~2)~q-1~/2 f;(x,  v, ,) dx dv dr .  

--2~zK2 Ce2 t-" /D fv fv ~b(x, v,)(l  +v2)<q+X-'V2fP(x,v,t)dxdvdv, 

STf.gl CBCqo,J. ~D fV (1--}- l)2)(q+ )'- 2)12 fp(x, v, t) dx av 

6" 2~zKzCBCq~ fo fv (1 q- v2) (q- ')/2 fP(x, v, t ) d x  du 

-- TcK2 C BCo f D f V (1 .of- U2)(q +,~ 1)/2 fP(x, V, t)dx du 

Let a = rain(q, 2 - ;L) for q > O, 1 <~ 2 < 2, and let 

Mq(t)=fDfv(l+v2)q/2fp(x,u I ~ +  (3.19) 

Then it follows that 
M'q(t) <% a I Mq _ a(t) - aoMq(t) (3.20) 

with positive constants a 1, ao>0.  Multiplying (3.20) with e ~~ and inte- 
grating gives 

ea~ -- Mq(O) ~ a 1 fl Mq-a(s) e~~ ds 

So, if sup,~+ Mq_a(t)<~Mq_a, then 

Mq( t ) <% Mq(O ) e-"O' + ai Mq_a is e~*- ,)~o ds 

<. Mq(O) + (a~/ao) mq a (3.21) 
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But Mo(t ) is globally bounded [cf. (1.17)], so recursively we find by (3.21) 
that M6(t), M26(t),..., Mq(t) all are globally bounded in time. Furthermore, 
if Mq 6(t)<<.Aq_6Mq 6(0), then by (3.19) and (3.21) 

Mq(t)<.Mq(O)+al aMq_a(O)<.(I +;~ Aq_a)Mq(O) 

so (3.13) holds f o r f = f  p. 
P 7  Finally, letting p -~oo ,  using FP/'Fo, f f, then the result (3.13) 

follows for f = f ( x ,  v, t). 

Remark. The results in Theorem 3.2, giving global boundedness in 
time for higher moments,  hold (among others) for inverse kth power forces 
with 2 = 7 + 1  , where 7=(k-5) / (k-1) ,  if k~>5 [cf.(0.10)], and with 
specular reflection at the boundary. 

4. L1-SOLUTIONS IN THE CASE OF INFINITE-RANGE FORCES 
WITHOUT CUTOFF 

In this section the linear Boltzmann equation is considered without 
cutoff in the collision term, i.e., including infinite-range forces, and written 
in the following integral form, which can formally be derived from Eq. (0.1) 
with (0.2), (0.3), and (0.9)(11): 

;D fv g(X, V, t) f(x, v, t) dx dv 

= ;Dfvg(X,v,O)Fo(x,v)dxdv 

+fofv f [v" gradx g(x, v, s) + ~  ] v 8s g(x, v, s) f (x ,  v, s) dx dv ds 

f fof f f, + Eg(x, v', s) - g(x, v, s)] O(x, v,)  
v v 

x B(O, w) f(x,  v, s) dO d~ d r ,  dx dv ds (4.1) 

for all test functions g ~ C~ '~176 Here 

C~'~= {geC 1"~176 g(x, v, t)=O, xeF=OD} 
where 

C 1 ' ~ =  {geCl(Dx Vx [0, oo)): IlgllL = sup Ig(x, v, t)l 

+ sup ~ g(x, v, t) + sup [gradx g(x, v, t)] 

+ sup ]grad, g(x, v, t)l < oo } 

822/59/1-2-28 
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The space domain D is here (as in Sections 1-3) supposed to be compact 
and (strictly) convex. The mathematical problems in the noncutoff case 
come from the nonintegrability of the function B(O, w), when 0--* 7t/2- 
(cf. Section 0). 

In refs. 11 and 12, Eq. (4.1) was considered for the periodic boundary 
case, with d# instead o f f d x  dv, to get measure solutions #(x, v, t). We will 
now use the H-theorem from Section 2 to get Ll-solutions of Eq. (4.1) by 
a method analogous to ref. 2 for the nonlinear, space-homogeneous case. In 
ref. 13, I used this method to get Ll-solutions to (4.1) in the periodic 
boundary case. For the given purpose I formulate the following essential 
lemma. 

Lemma 4.1. Let {fn}~=l be a sequence of L~+(Dx V)-functions, 
such that for some ~c o > 0 there is a constant CK0, 

fDfv(l+v)~Of.(x,v)axdv<<.C~o, neN (4.2) 

and such that for some function E(v) > 0 with [log E(v)]/(1 + v) e e L~(V) 
for some ~ < ~o, there is a constant CE, 

~ ~ f.(x,v)log[f.(x,v)/E(v)]dxdv<~Ce, neN (4.3) 
JD J V 

Then the sequence {f~} ~ contains a subsequence {f.:}j~=l converging 
weakly to a function feL~+(D x V), such that 

lim [_JDJ J J o J ~ [ v f " J ( x ' v ) g ( x ' v ) d x d v ] = ~ f  f(x,v) g(x,v, dxdv (4.4, 
j ~ o o  V" 

if g(x, v)/(1 + v)'~'e L~(D x V), 0 <~ ~c' < ~c o. 

Proof. (Cf. Lemma 3.1 in ref. 1 or Lemma2 in ref. 2.) The proof, 
which is based essentially on the well-known Dunford-Pettis'  theorem, is 
analogous to that given by Arkeryd (1) and is omitted here. ] 

The main result of this section is the following theorem about the 
existence of Ll-solutions to Eq. (4.1). This theorem is an improvement of 
Theorems 2.1 and 2.2 in ref. 11 and Theorem 2.1 in ref. 12, which deal with 
the periodic boundary case. 

T h e o r e m  4.2. Let B(O, w) be continuous for 0 ~< 0<7r/2, w>0 .  
Suppose there exist constants CB and 2, with 0 ~< 2 < 2, such that (for all 
v , v . e  V) 

fo ~/z wcosOB(O,w) dO<~CB(l+w):', w =  I v - v . I  (4.5) 
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and suppose 

fo~/2wcosOB(O,w) dO=C(1) when w ~ 0  (4.6) 

Let the cutoff angle 0(R, w) increase with the cutoff radius /~, and let 

~(x, v , ) = X ( x )  ~ ( v , )  (4.7) 

with X(x)~ L~ and q~(v,) measurable on V. Assume there is a constant 
Cqo.~ ~ such that 

fv(l+v,)2+max(l'q~ 1)O(x,v,)dv,<~Cqo,;., x~D\F (4.8) 

(l+v)q~ forsome qo>2, qo~>l (4.9) 

Let 

Fo(x, v)logl-Fo(x, v)/E(v)] e L I(D • V) 

where E(v) > 0, with 

[log E(v)]/(1 + v) q ~ L ~( V) 

satisfy the detailed balance relations 

~(x, v,)  E(v) = ~(x, v,)  E(v') 

and 

with 

for some q<qo 

Invl R(x, v ~ v') E(v) = ]nv'f R(x, - v '  --* - v )  E(--v')  

(4.10) 

(4.11) 

fz~ fvf(x,  v, t) dx dv= f~ fvFo(x, v) dx dv (4.13) 

and 

fDfv(l+v2)q/2f(x,v,t)dxdv<~eaq'fDfv(l+v2)q/2Fo(x,v)dxdv (4.14) 

R(x, v-~ v') = 0, v'>v, v, v',~ V (4.12) 

Then there exists (for all t > 0 )  a nonnegative solution f =  
f(x, v, t)~ L~ (D • V) to the linear, space-inhomogeneous Boltzmann equa- 
tion in the integral form (4.1). The solution satisfies 
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for 0 < q < qo (with some constant aq), and for 0 ~< t < T <  0% where T is 
arbitrary. 

Moreover, for 1 ~< 2 < 2, if there are constants CB > 0 and Co > 0 such 
that 

fo ~z/2 W COS 20 B(O, w) dO >~ Ca wx (4.15) 

and 

fv~(X, v.)dv.>>.Co, x s D \ F  (4.16) 

then 

fD Iv (1 + v2) q/2 f (x ,  v, t) dx dv <. Aq fD fv (1 + u2) q/2 Fo(x , u dx du (4.17) 

for 0 < q ~< qo (with some c o n s t a n t  Aq), and for all t ~> 0. 

t co be Proof. (Cf. the proof of Theorem 3 in ref. 2.) Let {f"(x, v, )}n=l 
a sequence of mild solutions to the linear Boltzmann equation (0.1) with 
(0.2), (0.3), and (0.9) with cutoff radius k =n,  S =  S, (cf. Theorems 1.3 and 
1.4). Then one finds, by straightforward calculations analogous to those in 
the previous section, that the functions f n =  fn(x, v, t) satisfy the integral 
equation (4.1). By the H-theorem, Theorem2.1, and Lemma4.1, we 
can select a subsequence {fn,}~= 1 converging weakly to a function 
f~L~+(Dx V) for all rational t, with O<<.t<<.T<oo if 0~<2< 1 and with 
t~>0 if 1 4 2 < 2  [-cf. Theorems 3.1 and 3.2 to get (4.2)]. But for g~C~ '~ 
the sequence ~D ~vfn( x, v, t) g(x, v, t) dx dv is equicontinuous in t (cf. the 
proof of Theorem 2.1 in ref. 11), and then the subsequence {fnj} converges 
weakly to a function f ~ LI+ (D x V) for all t (with 0 ~< t ~< T < oo and t ~> 0, 
respectively). One also finds that the function f =  w - l i m j ~  oo f "  satisfies 
the integral equation (4.1) (cf. the proof of Theorem 2.1 in ref. 11 when 
0 <~ 2 < 1, and Theorem 2.1 in ref. 12 when 1 ~< 2 < 2). Concerning local and 
global boundedness of higher moments, for 0 ~< 2 < 2 and 1 ~< 2 < 2, respec- 
tively, use Proposition 3.1 with inequality (3.5) and Theorem3.2 with 
(3.13), which hold for fnj and then also for f = w -  l imj~ ~ f% This com- 
pletes the proof of Theorem 4.2. | 

We will now in two corollaries study some special cases of physical 
interest, the first concerning local Maxwellian distribution functions r and 
the second concerning inverse kth power forces for the interactions. 
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C o r o l l a r y  4.3. Assume B(O, w), O(R, w), and R ( x , v ~ v ' )  as in 
Theorem 4.2. Suppose 

if(x, v,)  = X(x). exp( - cm, v 2) 

and 

E(v) = a .  exp( - cmv 2) 

with continuous function X(x) > 0 and positive constants a, c, m , ,  and m, 
such that the detailed balance relation (4.11) holds. If (1 + v) q~ F0(x, v) 
L I ( D  • V) for some qo > 2, and Fo(x, v)log F0(x, v)e LI(D x V), then (for 
t >  0) there exists a solution f (x ,  v, t)~ L~+(D x V) to the linear Boltzmann 
equation in the integral form (4.1) with infinite-range forces. The solution 
satisfies (4.13) and (4.14) for 0~<2<2,  and also (4.17), if 1 ~<2<2. 

Proof. One finds that 

F o log(Fo/E) = Fo log Fo - Fo log E 

= F o log F o + (cmv 2 -- log a) F o ~ LI(D • V) 

and the corollary follows from Theorem 4.2. ! 

C o r o l l a r y  4.4. Assume in the case of infinite-range, inverse kth 
power forces with k > 3  that ~b, Fo, and R satisfy (4.7)-(4.12) and (4.16) 
with 2 = ( 2 k - 6 ) / ( k - 1 ) .  Then (for t > 0 )  there exists a solution 
f (x ,  v, t)E L~+(D • V) to the integral equation (4.1). The solution conserves 
mass. Higher moments 

fo f 11 +  2)q 2Ifx, v, tt dx dv 

are globally bounded in time and satisfy (4.17) if k ~> 5, respectively locally 
bounded (i.e., for O<~t<~T<~, T arbitrary) with (4.14) if 3 < k < 5 ,  
provided they exist initially. 

Proof. See (0.10) with 7 = 2 -  1, and use Theorem 4.2. 1 

Finally we will formulate an H-theorem for our L1-solutions in the 
infinite-range case, following a method used by Elmroth ~7) for the non- 
linear, space-homogeneous equation. We start with the following useful 
lemma with the H-functional H E defined in (2.1). 

Lernma 4.5. Let {fn}~__l be a sequence of functions in L~+(Dx V) 
with f , , l o g f n s L l ( D x V ) .  If fn tends to f weakly in L I ( D x V ) ,  and 
fn log E converges weakly to f log  E, then 

H E ( f )  <~ lim inf HE(f , )  
n ~ c o  
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Proof. (Cf. Theorem 13 in ref. 8 or Theorem6 in ref. 7.) Since 
fn log(fn/E ) = f ,  log f , - f n  log E, then the lemma is an immediate conse- 
quence of the following proposition with ~ o ( f ) = f l o g f  

P r o p o s i t i o n  A. (6) Let q~: R ~ ~ be a measurable function. Define, 
for t~ ~ ~3 • R3, a functional o n  L p, 1 ~< p < ~ ,  by 

H~(f, Q) = jj~ cp(f(x, v)) dx dv 

Then, for each measurable t2 c ~3• ~3, H~O is lower semicontinuous with 
respect to weak LP-convergence if and only if (p is a convex function. 

Then we get the following version of an H-theorem in the infinite- 
range case. 

T h o o r e m  4.6. Suppose f = f ( x , v ,  t) is a solution to the linear 
Boltzmann equation in integral form (4.1) given by Theorem 4.2. Then the 
relative H-functional H~(f)(t) exists and satisfies (for t >  0) 

HE(f  )(t) <~ HE(Fo) 

Proof. We start from the cutoff case with cutoff radius R = n .  By 
Theorem 2.1 

HE(fn)(t) <~HE(Fo) + [NE(f ' ) ( r )  + b . NE( f )(r)] dr ~< HE(Fo) 

Then by Theorem 4.2 (and Lemma4.1) there exists a subsequence 
{fnj}~_,, such that f =  w - l i m j ~ f  nj exists, and, by Lemma 4.5, 

H e ( f  )(t) ~<lim inf EHE(f"O(t) ] <<. HE(Fo) | 
j ~ z o  

Remark. Actually, we get a slightly better result, 

If' } HE(f  )(t) <~ He(Fo) + lim inf [Ne(f~O(r) + N~(f~) ( r ) ]  dr 
j ~ o o  L~o 

with Ne<<.O and N ~ < 0  defined in (2.5), (2.6). 

5. THE CASE OF AN U N B O U N D E D  SPACE D O M A I N  

In this section we will discuss generalizations of the results from 
Sections 1 4  to an unbounded, (strictly) convex domain D. 
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The existence theorem, Theorem 1.3 in Section 1, holds also for 
unbounded D, using the same construction of solution by iterates (1.14), 
where tb = tb(x, v) = o% if the right-hand side of (1.7) is not defined. To get 
an analogy of the detailed balance relation (1.27), (1.29), we assume that 
there exists a function E = Et(x, v) -- E0(x - tv, v) > 0, such that 

K ( x + t v ,  v ~ v ' ) E o ( x , v ) = K ( x + t v ,  v ' ~ v ) E o ( x , v '  ) (5.1) 

o r  

Then 

and 

~b(x + tv, v .)  Eo(x, v) = ~0(x + tv, v ,)  Eo(x, v') 

(QEt)(x + tv, v, t) = 0 

d (E,(x+tv,v)) d dt (Eo(X, v)) = o 

(5.2) 

so E =  E,(x, v) sotisfies Eq. (0.1). 
For the boundary we assume that the same detailed balance relation 

(1.30) holds as in Sections 1~4, but now with 

Eb(x,v)= lira Eo(x - sv ,  v), x ~ F + ( v )  (5.3) 
s ~ O •  

Then E = E , ( x ,  v) is a (collision invariant) solution to the linear 
Boltzmann equation in the strong form (0.1) with (0.2) and (0.3), and also 
to the equation in the mild form (1.9) and in the exponential form (1.10), 
if Fo(x, v) = Eo(x, v). Here we assume that 

Eo(x, v) E L I ( D  x V) 

A physically interesting case is given by locally Maxwellian functions 
E~(x, v), where 

Eo(x, v) = a exp( - cmv 2 - bx 2) 

with constants a, b, c > 0, if 

0(x, v , ) = X ( x )  e x p ( - c m , v  2) 

The statements in Theorem 1.4 about mass conservation and unique- 
ness hold if 

K(x + tv, v ~ v ' )  Eo(x , v) ~ L~(D x V• V) 
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and 

Inv[ Eo(x, v)~LI+(F•  V) 

For the proof, use that the iterates satisfy 

fP(x + tv, v, t) ~< p .  Eo(x, v), n e 

if 

F~(x, v) = min(Fo(x, v), pE0(x, v)), p = 1, 2, 3 .... 

The //-theorem, Theorem 2.1 in Section 2, holds also for an unboun- 
ded domain D, with the function Eo(x, v) in (2.5) and (2.6) instead of E(v), 
and Eo(x, v') instead of E(v'), after a change of variables x ~ x  + tv. For 
the proof use the functions [cf. (2.11a)] 

P'J t) = f n (  , v, . f n  (x, v, P x t) + 1 Et(x, v), 
J 

n~N,  p, j =  1, 2, 3, ... 

The local boundedness proposition about higher moments, Proposi- 
tion 3.1 in Section 3, has an analogy for an unbounded domain D, 

fD fV (1 -t- X 2 + v2)q/2 f (x ,  V, t) dx dv 

~ eAt fD fv (1-k- x2-l- v2)q/2 Fo(x, v) dx dv 

for 0 < q ~< qo and some constant A, if Fo satisfies 

( 1 -~- X 2 -~ I)2) qO/2 FO(X , u  '~ L 1 (D x V) (5.4) 

and if the other assumptions in Proposition 3.1 are satisfied. For a proof, 
start with (3.6) and multiply by (1 + v2+ Ix + tv]2) q/2 with a suitable cutoff 
[cf. hq.r in (3.1)]. 

In the noncutoff case, including infinite-range forces (cf. Section 4), 
there exist Ll-solutions to the integral equation (4.1) even in the case of 
unbounded space domain D (cf. Theorem 4.2). First we get an analogy to 
Lemma 4.1, by changing (1 + v) to (1 + x2+ v2) 1/2 in (4.1)-(4.4) and using 
a function E(x, v) instead of E(v) in (4.3). Then we can prove a generaliza- 
tion of Theorem 4.2 to unbounded domains D, including existence, mass 
conservation, and local boundedness of higher moments for both soft and 
hard collision potentials, 0 < 2 < 2. 
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Theorem 5.1. Let the assumptions on B, 0, and ~b in Theorem 4.2 
be satisfied [cf. (4.5)-(4.8)], together with (5.4) for some qo > 2, qo/> 1. Let 

Fo(x, v) log[Fo(x, v)/Eo(x, v)] e L~(D x V) 

where Eo(x, v) > 0 with 

{log[Eo(x, v)] }/(1 + x 2 +/)2) q/2 ~: L~(D x V) 

for some c~< q0, and Eo(x, v) satisfies the detailed balance relations (5.1) 
and (1.30) with (5.3), and let (4.12) hold. 

Then there exists (for all t > 0 )  a nonnegative solution f = f ( x ,  v, t ) e  
L~+(D x V) to the linear, space-inhomogeneous Boltzmann equation in 
integral form (4.1) with unbounded, (strictly) convex body D. The solution 
satisfies 

and 

fD fvf(X, V, t) dx dv= fD fvFo(x, v) dx dv 

fD f (1 + x 2 + D2) q/2 f(]~, t) dx dv u 
v 

cAt fD fV (I + x2 + vZ)q/2 Fo(x, v) dx  dv 

for 0<q~<qo (with some constant A), and for 0~<t~< T <  oe, where T is 
arbitrary. 

Proof. Use the generalization of Lemma 4.1 mentioned above, and 
essentially the same technique as in the proof of Theorem 4.2. | 

Finally, we can get natural analogies to the physically interesting 
cases, Corollary 4.3 and 4.4, and also get an H-theorem for unbounded 
domains in the noncutoff case (cf. Theorem 4.6). 
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